
Concurrent Collection Processing
withPools

The Whole GPars Team <gpars-developers@googlegroups.com>

Version 1.2.1, 2015-12-01

Table of Contents
GParsPool Concurrent Collection Processing . 2

 To read this topic in the PDF format, please click here.

1

GParsPool.pdf

GParsPool Concurrent Collection Processing
Dealing with data frequently involves manipulating collections. Lists, arrays, sets, maps, iterators,
strings and lot of other data types can be viewed as collections of items. The common pattern to
process such collections is to take elements sequentially, one-by-one, and make an action for each of
the items in row.

Take, for example, the min() function, which is supposed to return the smallest element of a collection.
When you call the min() method on a collection of numbers, the caller thread will create an
accumulator or so-far-the-smallest-value initialized to the minimum value of the given type, let say to
zero. And then the thread will iterate through the elements of the collection and compare them with
the value in the accumulator .

Once all elements have been processed, the minimum value is stored in the accumulator .

This algorithm, however simple, is totally wrong on multi-core hardware.

Running the min() function on a dual-core chip can leverage at most 50% of the computing power of
the chip. On a quad-core it would be only 25%.

 this algorithm effectively wastes 75% of the computing power !

Correct! this algorithm effectively wastes 75% of the computing power of the chip.

Tree-like structures proved to be more appropriate for parallel processing. The min() function in our
example doesn’t need to iterate through all the elements in row and compare their values with the
accumulator . What it can do instead is relying on the multi-core nature of your hardware.

A parallel_min() function could, for example, compare pairs (or tuples of certain size) of neighboring
values in the collection and promote the smallest value from the tuple into a next round of
comparison.

Searching for minimum in different tuples can safely happen in parallel and so tuples in the same
round can be processed by different cores at the same time without races or contention among
threads.

The GParsPool class enables a ParallelArray-based (from JSR-166y) DSL on collections.

Examples of use:

2

GParsPoolwithPool Sample

GParsPool.withPool {
 def selfPortraits = images.findAllParallel{
 it.contains me}.collectParallel {it.resize()
 }

 //a map-reduce functional style
 def smallestSelfPortrait = images.parallel
 .filter{it.contains me}
 .map{it.resize()}
 .min{it.sizeInMB}
}

The GParsExecutorsPool class provides similar functionality to the GParsPool class, however uses JDK
thread pools instead of the more efficient ParallelArray-based (from JSR-166y) implementation.

Examples of use:

GParsExecutorsPool.withPool

GParsExecutorsPool.withPool {
 def selfPortraits = images
 .findAllParallel{it.contains me}
 .collectParallel {it.resize()}
}

See the Parallel Collection section in the User Guide for more information.

3

./guide/#_parallel_collections_2

	Concurrent Collection Processing withPools
	Table of Contents
	GParsPool Concurrent Collection Processing

