
Fork/Join
The Whole GPars Team <gpars-developers@googlegroups.com>

Version 1.2.1, 2015-12-01

Table of Contents
The Abstraction . 2

The GPars Abstraction Convenience Layer . 3

Fork/Join Saves Your Resources . 4

 To read this topic in the PDF format, please click here.


Fork/Join or Divide and Conquer is a very powerful abstraction to
solve hierarchical problems

1

ForkJoin.pdf

The Abstraction
When talking about hierarchical problems, think about quick sort, merge sort, file system or general
tree navigation and such.

• Fork/Join algorithms essentially splits a problem at hand into several smaller sub-problems and
recursively applies the same algorithm to each of the sub-problems.

• Once the sub-problem is small enough, it is solved directly.

• The solutions of all sub-problems are combined to solve their parent problem, which, in turn, helps
solve its own parent problem.

 The JSR-166y library leaves a couple of rough edges, which can hurt you

The JSR-166y library solves Fork/Join orchestration pretty nicely for us, but leaves a couple of rough
edges, which can hurt you, if you don’t pay attention enough. You still deal with threads, pools and
synchronization barriers.

2

The GPars Abstraction Convenience Layer
GPars can hide the complexities of dealing with threads, pools, barriers and RecursiveActions from
you, yet let you leverage the powerful Fork/Join implementation in jsr166y.

ForkJoin Sample

import static groovyx.gpars.GParsPool.runForkJoin
import static groovyx.gpars.GParsPool.withPool

//feel free to experiment with the number of fork/join threads in the pool
withPool(1) {pool ->
 println """Number of files: ${
 runForkJoin(new File("./src")) {file ->
 long count = 0
 file.eachFile {
 if (it.isDirectory()) {
 println "Forking a child task for $it"
 forkOffChild(it) //fork a child task
 } else {
 count++
 }
 }
 return count + (childrenResults.sum(0))
 //use results of children tasks to calculate and store own result
 }
 }"""
}

3

Fork/Join Saves Your Resources
Fork/Join operations can be safely run with small number of threads thanks to internally using the
TaskBarrier class to synchronize the threads.

While a thread is blocked inside an algorithm waiting for its sub-problems to be calculated, the thread
is silently returned to the pool to take on any of the available sub-problems from the task queue and
process them. Although the algorithm creates as many tasks as there are sub-directories and tasks wait
for the sub-directory tasks to complete, as few as one thread is enough to keep the computation going
and eventually calculate a valid result.

If you’d like to know more, check out the _Fork/Join
section of the User Guide.

4

	Fork/Join
	Table of Contents
	The Abstraction
	The GPars Abstraction Convenience Layer
	Fork/Join Saves Your Resources

