Fork/Join

The Whole GPars Team <gpars-developers@googlegroups.com>

Version 1.2.1, 2015-12-01

Table of Contents

The ADSTraCtion.o ottt ettt e e e e
The GPars Abstraction CONVeNience Layerttt it iiee e

FOrk/Join Saves YOUT RESOUTCESttt et e tee ettt e et et e e e et ee e e e iee e tiae e

O To read this topic in the PDF format, please click here.

Q Fork/Join or Divide and Conquer is a very powerful abstraction to
solve hierarchical problems

ForkJoin.pdf

The Abstraction

When talking about hierarchical problems, think about quick sort, merge sort, file system or general
tree navigation and such.

» Fork/Join algorithms essentially splits a problem at hand into several smaller sub-problems and
recursively applies the same algorithm to each of the sub-problems.
* Once the sub-problem is small enough, it is solved directly.

* The solutions of all sub-problems are combined to solve their parent problem, which, in turn, helps
solve its own parent problem.

0 The JSR-166y library leaves a couple of rough edges, which can hurt you

The JSR-166y library solves Fork/Join orchestration pretty nicely for us, but leaves a couple of rough
edges, which can hurt you, if you don’t pay attention enough. You still deal with threads, pools and
synchronization barriers.

The GPars Abstraction Convenience Layer

GPars can hide the complexities of dealing with threads, pools, barriers and RecursiveActions from
you, yet let you leverage the powerful Fork/Join implementation in jsr166y.

Forkjoin Sample

import static groovyx.gpars.GParsPool.runForkJoin
import static groovyx.gpars.GParsPool.withPool

//feel free to experiment with the number of fork/join threads in the pool
withPool(1) {pool ->
println """Number of files: ${
runForkJoin(new File("./src")) {file ->
long count = 0
file.eachFile {
if (it.isDirectory()) {
println "Forking a child task for $it"
forkOffChild(it) //fork a child task
} else {
count++
}
}

return count + (childrenResults.sum(@))
//use results of children tasks to calculate and store own result

}
}ll nn

Fork/Join Saves Your Resources

Fork/Join operations can be safely run with small number of threads thanks to internally using the
TaskBarrier class to synchronize the threads.

While a thread is blocked inside an algorithm waiting for its sub-problems to be calculated, the thread
is silently returned to the pool to take on any of the available sub-problems from the task queue and
process them. Although the algorithm creates as many tasks as there are sub-directories and tasks wait
for the sub-directory tasks to complete, as few as one thread is enough to keep the computation going
and eventually calculate a valid result.

If you’d like to know more, check out the _Fork/Join
section of the User Guide.

	Fork/Join
	Table of Contents
	The Abstraction
	The GPars Abstraction Convenience Layer
	Fork/Join Saves Your Resources

