Agent

The Whole GPars Team <gpars-developers@googlegroups.com>

Version 1.2.1, 2015-12-01

Table of Contents

O To read this topic in the PDF format, please click here.

Agent.pdf

Agent

The Agent is a special-purpose thread-safe non-blocking implementation inspired by Agents in Clojure.

Introduction

Agents safe-guard mutable values by allowing only a single agent-managed thread to make
modifications to them. The mutable values are not directly accessible from outside, but instead
requests have to be sent to the agent and the agent guarantees to process the requests sequentially
on behalf of the callers. Agents guarantee sequential execution of all requests and so consistency of the
values.

Agents are asynchronous active objects that accept code (functions) as messages. After reception the
function is run against the internal state of the Agent and the return value of the function is considered
to be the new internal state of the Agent.

Schematically:

Agent Sample

agent = new Agent(0) //created a new Agent wrapping an integer with initial value 0
agent.send {increment()} //asynchronous send operation, sending the increment() function

//after some delay to process the message, the internal Agent's state has been updated

assert agent.val== 1

To wrap integers, we can certainly use AtomicXXX types of the Java platform. When the state or the
update algorithms become more complex we need more support.

Examples

Another Sample

import groovyx.gpars.agent.Agent

/**

* Conference stores the number of registrations and allows parties to register and

unregister.

* Tt inherits from the Agent class and adds the register() and unregister() private

methods,

* which callers may use it the commands they submit to the Conference.

*/

class Conference extends Agent<Long> {
def Conference() { super(0) }
private def register(long num) { data += num }
private def unregister(long num) { data -= num }

}

final Agent conference = new Conference() //new Conference created

/**

* Three external parties will try to register/unregister concurrently
*/

final Thread t1 = Thread.start {

conference << {register(10L)} //send a command to register 10 attendees
+
final Thread t2 = Thread.start {

conference << {register(5L)} //send a command to register 5 attendees
}
final Thread t3 = Thread.start {

conference << {unregister(3L)} //send a command to unregister 3
attendees

}

[t1, t2, t3]*.join()
assert 12L == conference.val

For latest update, see the Agent section of the User Guide and the respective Demos.

Demos.html

	Agent
	Table of Contents
	Agent
	Introduction
	Examples

