
Actor
The Whole GPars Team <gpars-developers@googlegroups.com>

Version 1.2.1, 2016-01-11

Table of Contents
Actor . 2

Actors Inside . 3

Usage of Actors . 5

 To read this topic in the PDF format, please click here.

1

Actor.pdf

Actor
The actor support in GPars was inspired by the Actors library in Scala but has subsequently gone beyond
that.

Actors allow for a messaging-based concurrency model, built from independent active objects that
exchange messages and have no mutable shared state. Actors can help solve or avoid issues like
deadlocks, livelocks or starvation, so typical for shared memory. A nice wrap-up of the key concepts
behind actors was written recently by Ruben Vermeersch

2

http://ruben.savanne.be/articles/concurrency-in-erlang-scala
http://ruben.savanne.be/articles/concurrency-in-erlang-scala

Actors Inside
Actors can share a relatively small thread pool. This can go as far as having many concurrent actors
that share a single pooled thread. They avoid the threading limitations of the JVM.

Actor code is processed in chunks separated by quiet periods of waiting for new events (messages).
This can be naturally modeled through continuations.

As JVM doesn’t support continuations directly, they have to be simulated in the actors frameworks,
which has slight impact on organization of the actors' code. However, the benefits in most cases
outweigh the difficulties.

Actor sample

import groovyx.gpars.actor.Actor
import groovyx.gpars.actor.DefaultActor

class GameMaster extends DefaultActor {
 int secretNum

 void afterStart() {
 secretNum = new Random().nextInt(10)
 }

 void act() {
 loop {
 react { int num ->
 if (num > secretNum)
 reply 'too large'
 else if (num < secretNum)
 reply 'too small'
 else {
 reply 'you win'
 terminate()
 }
 }
 }
 }
}

class Player extends DefaultActor {
 String name
 Actor server
 int myNum

 void act() {
 loop {

3

 myNum = new Random().nextInt(10)
 server.send myNum
 react {
 switch (it) {
 case 'too large':
 println "$name: $myNum was too large"
 break
 case 'too small':
 println "$name: $myNum was too small"
 break
 case 'you win':
 println "$name: I won $myNum"; terminate()
 }
 }
 }
 }
}

def master = new GameMaster().start()
def player = new Player(name: 'Player', server: master).start()

[master, player]*.join()

example by Jordi Campos i Miralles, Departament de Matematica Aplicada i Analisi, MAiA Facultat de
Matematiques, Universitat de Barcelona

4

Usage of Actors
For more details on Actors visit the Actors section of our Reference Book.

Please also see the numerous Actor Demos.

5

./qs
Demos.html

	Actor
	Table of Contents
	Actor
	Actors Inside
	Usage of Actors

